Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3736031.v1

ABSTRACT

Background Accumulating evidence suggests that autonomic dysfunction and persistent systemic inflammation are common clinical features in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID. However, there is limited knowledge regarding their potential association with circulating biomarkers and illness severity status.Methods This prospective, cross-sectional, case-control cohort study aimed to distinguish between the two patient populations by using self-reported outcome measures and circulating biomarkers to assess endothelial function and systemic inflammation. Thirty-one individuals with ME/CFS, 23 individuals with long COVID, and 31 matched healthy subjects were included. Regression analysis was used to examine associations between self-reported outcome measures and circulating biomarkers in study participants. Classification across groups was based on principal component and discriminant analyses.Results Four ME/CFS patients (13%), 1 with long COVID (4%), and 1 healthy control (3%) presented postural orthostatic tachycardia syndrome (POTS) with the 10-min NASA lean test. Compared with healthy controls, ME/CFS and long COVID subjects showed higher levels of ET-1 (p < 0.05) and VCAM-1 (p < 0.001), and lower levels of nitrites (NOx assessed as NO2- + NO3-) (p < 0.01). ME/CFS patients also showed higher levels of serpin E1 (PAI-1) and E-selectin than did both long COVID and control subjects (p < 0.01 in all cases). Long COVID patients had lower TSP-1 levels than did ME/CFS patients and healthy controls (p < 0.001). As for inflammation biomarkers, both long COVID and ME/CFS subjects had higher levels of TNF-α than did healthy controls (p < 0.01 in both comparisons). Compared with controls, ME/CFS patients had higher levels of IL-1β (p < 0.001), IL-4 (p < 0.001), IL-6 (p < 0.01), IL-10 (p < 0.001), IP-10 (p < 0.05), and leptin (p < 0.001). Principal component analysis supported differentiation between groups based on self-reported outcome measures and endothelial and inflammatory biomarkers.Conclusions Our findings revealed that combining biomarkers of endothelial dysfunction and inflammation with outcome measures differentiate ME/CFS and Long COVID using robust discriminant analysis of principal components. Further research is needed to provide a more comprehensive characterization of these underlying pathomechanisms, which could be promising targets for therapeutic and preventive strategies in these conditions.


Subject(s)
Fatigue Syndrome, Chronic , Postural Orthostatic Tachycardia Syndrome , COVID-19 , Inflammation
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.23.21254175

ABSTRACT

Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) show specific epigenetic and gene expression signatures of the disease. However, it is unknown whether these signatures in ME/CFS include abnormal levels of the human angiotensin-converting enzyme ACE and ACE2, the latter being the main receptor described for host-cell invasion by SARS-CoV-2. To investigate that, we first reviewed published case-control genome-wide association studies based on single nucleotide polymorphism data, case-control epigenome-wide association studies based on DNA methylation data, and case-control gene expression studies based on microarray data. From these published studies, we did not find any evidence for a difference between patients with ME/CFS and healthy controls in terms of genetic variation, DNA methylation, and gene expression levels of ACE and ACE2. In line with this evidence, the analysis of a new data set on the ACE/ACE2 gene expression in peripheral blood mononuclear cells did not find any differences between a female cohort of 37 patients and 34 age-matched healthy controls. Future studies should be conducted to extend this investigation to other potential receptors used by SARS-CoV-2. These studies will help researchers and clinicians to better assess the health risk imposed by this virus when infecting patients with this debilitating disease.


Subject(s)
Fatigue Syndrome, Chronic
SELECTION OF CITATIONS
SEARCH DETAIL